Apigenin inhibits immunostimulatory function of dendritic cells: Implication of immunotherapeutic adjuvant.
نویسندگان
چکیده
Apigenin, one of the most common flavonoids, has been shown to possess anti-inflammatory, anticarcinogenic, and free radical-scavenging properties. However, the influence of apigenin on the immunostimulatory effects and maturation of dendritic cells (DC) remains, for the most part, unknown. In this study, we have attempted to ascertain whether apigenin influences the expression of surface molecules, dextran uptake, cytokine production, and T-cell differentiation as well as the signaling pathways underlying these phenomena in murine bone marrow-derived DC. In the presence of apigenin, CD80, CD86, and major histocompatibility complex class I and II molecules, expressions on DC were significantly suppressed, and lipopolysaccharide (LPS)-induced interleukin (IL)-12 expression was impaired. The DC proved highly efficient at antigen capture, as evidenced by the observation of mannose receptor-mediated endocytosis in the presence of apigenin. The LPS-induced activation of mitogen-activated protein kinase, the nuclear translocation of its nuclear factor-kappaB p65 subunit, and the induction of the T-helper 1 response were all impaired in the presence of apigenin, whereas the cell-mediated immune response remained normal. These findings provide new insight into the immunopharmacological functions of apigenin and its effects on DC, and they may also prove useful in the development of adjuvant therapies for individuals suffering from acute or chronic DC-associated diseases.
منابع مشابه
Effective Dendritic Cell-based Immunotherapeutic Vaccines for Acute Myeloid Leukemia (AML)
Acute myeloid leukemia (AML) is a type of poor prognosis hematological malignancies characterized by heterogeneous clonal expansion of myeloid progenitors. Leukemic stem cells are thought to form the majority of a cell population in minimal residual diseases (MRDs) which are resistant to current chemotherapeutic regimens and mediate disease relapse. Current therapeutic vaccine strategies have d...
متن کاملBacterial c-di-GMP is an immunostimulatory molecule.
Cyclic diguanylate (c-di-GMP) is a bacterial intracellular signaling molecule. We have shown that treatment with exogenous c-di-GMP inhibits Staphylococcus aureus infection in a mouse model. We now report that c-di-GMP is an immodulator and immunostimulatory molecule. Intramammary treatment of mice with c-di-GMP 12 and 6 h before S. aureus challenge gave a protective effect and a 10,000-fold re...
متن کاملDendritic Cell Maturation with CpG for Tumor Immunotherapy
Background: Bacterial DNA has immunostimulatory effects on different types of immune cells such as dendritic cells (DCs). Application of DCs as a cellular adjuvant represents a promising approach in the immunotherapy of infectious disease and cancers. Objectives: To investigate the effect of tumor antigen pulsed DCs in the presence of CpG-1826 in treatment of a murine model of cancer. Methods: ...
متن کاملSorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses.
The tyrosine kinase inhibitors sorafenib and sunitinib are approved for the treatment of patients with malignant diseases. To analyze the possible use of these compounds in combination with immunotherapeutic approaches, we analyzed the effects of both inhibitors on the immunostimulatory capacity of human dendritic cells (DCs) and the induction of primary immune responses in vivo. Sorafenib, but...
متن کاملInjection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation.
A key and limiting step in the process of generating human monocyte-derived dendritic cells (DC) for clinical applications is maturation. In the setting of immunotherapy, DC are matured ex vivo by culturing them with various agents that mimic the conditions encountered at a site of inflammation. This study examined whether the ex vivo DC maturation step could be replaced by maturing DC in situ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 70 3 شماره
صفحات -
تاریخ انتشار 2006